142 research outputs found

    Regulating highly dynamic unstructured proteins and their coding mRNAs

    Get PDF
    Orchestration of the lifetimes and conformations of intrinsically unstructured proteins and their mRNAs ensure precision and flexibility in biological control

    A Systematic Study of the Vibrational Free Energies of Polypeptides in Folded and Random States

    Get PDF
    AbstractMolecular vibrations, especially low frequency motions, may be used as an indication of the rigidity or the flatness of the protein folding energy landscape. We have studied the vibrational properties of native folded as well as random coil structures of more than 60 polypeptides. The picture we obtain allows us to perceive how and why the energy landscape progressively rigidifies while still allowing potential flexibility. Compared with random coil structures, both α-helices and β-hairpins are vibrationally more flexible. The vibrational properties of loop structures are similar to those of the corresponding random coil structures. Inclusion of an α-helix tends to rigidify peptides and so-called building blocks of the structure, whereas the addition of a β-structure has less effect. When small building blocks coalesce to form larger domains, the protein rigidifies. However, some folded native conformations are still found to be vibrationally more flexible than random coil structures, for example, β2-microglobulin and the SH3 domain. Vibrational free energy contributes significantly to the thermodynamics of protein folding and affects the distribution of the conformational substates. We found a weak correlation between the vibrational folding energy and the protein size, consistent with both previous experimental estimates and theoretical partition of the heat capacity change in protein folding

    Conformational study of the protegrin-1 (PG-1) dimer interaction with lipid bilayers and its effect

    Get PDF
    BACKGROUND: Protegrin-1 (PG-1) is known as a potent antibiotic peptide; it prevents infection via an attack on the membrane surface of invading microorganisms. In the membrane, the peptide forms a pore/channel through oligomerization of multiple subunits. Recent experimental and computational studies have increasingly unraveled the molecular-level mechanisms underlying the interactions of the PG-1 β-sheet motifs with the membrane. The PG-1 dimer is important for the formation of oligomers, ordered aggregates, and for membrane damaging effects. Yet, experimentally, different dimeric behavior has been observed depending on the environment: antiparallel in the micelle environment, and parallel in the POPC bilayer. The experimental structure of the PG-1 dimer is currently unavailable. RESULTS: Although the β-sheet structures of the PG-1 dimer are less stable in the bulk water environment, the dimer interface is retained by two intermolecular hydrogen bonds. The formation of the dimer in the water environment implies that the pathway of the dimer invasion into the membrane can originate from the bulk region. In the initial contact with the membrane, both the antiparallel and parallel β-sheet conformations of the PG-1 dimer are well preserved at the amphipathic interface of the lipid bilayer. These β-sheet structures illustrate the conformations of PG-1 dimer in the early stage of the membrane attack. Here we observed that the activity of PG-1 β-sheets on the bilayer surface is strongly correlated with the dimer conformation. Our long-term goal is to provide a detailed mechanism of the membrane-disrupting effects by PG-1 β-sheets which are able to attack the membrane and eventually assemble into the ordered aggregates. CONCLUSION: In order to understand the dimeric effects leading to membrane damage, extensive molecular dynamics (MD) simulations were performed for the β-sheets of the PG-1 dimer in explicit water, salt, and lipid bilayers composed of POPC lipids. Here, we studied PG-1 dimers when organized into a β-sheet motif with antiparallel and parallel β-sheet arrangements in an NCCN packing mode. We focus on the conformations of PG-1 dimers in the lipid bilayer, and on the correlation between the conformations and the membrane disruption effects by PG-1 dimers. We investigate equilibrium structures of the PG-1 dimers in different environments in the early stage of the dimer invasion. The dimer interface of the antiparallel β-sheets is more stable than the parallel β-sheets, similar to the experimental observation in micelle environments. However, we only observe membrane disruption effects by the parallel β-sheets of the PG-1 dimer. This indicates that the parallel β-sheets interact with the lipids with the β-sheet plane lying obliquely to the bilayer surface, increasing the surface pressure in the initial insertion into the lipid bilayer. Recent experimental observation verified that parallel PG-1 dimer is biologically more active to insert into the POPC lipid bilayer

    Ligand Binding and Circular Permutation Modify Residue Interaction Network in DHFR

    Get PDF
    Residue interaction networks and loop motions are important for catalysis in dihydrofolate reductase (DHFR). Here, we investigate the effects of ligand binding and chain connectivity on network communication in DHFR. We carry out systematic network analysis and molecular dynamics simulations of the native DHFR and 19 of its circularly permuted variants by breaking the chain connections in ten folding element regions and in nine nonfolding element regions as observed by experiment. Our studies suggest that chain cleavage in folding element areas may deactivate DHFR due to large perturbations in the network properties near the active site. The protein active site is near or coincides with residues through which the shortest paths in the residue interaction network tend to go. Further, our network analysis reveals that ligand binding has “network-bridging effects” on the DHFR structure. Our results suggest that ligand binding leads to a modification, with most of the interaction networks now passing through the cofactor, shortening the average shortest path. Ligand binding at the active site has profound effects on the network centrality, especially the closeness

    Protein dynamics and conformational selection in bidirectional signal transduction

    Get PDF
    Protein conformational dynamics simultaneously allow promiscuity and specificity in binding. The multiple conformations of the free EphA4 ligand-binding domain observed in two new EphA4 crystal structures provide a unique insight into the conformational dynamics of EphA4 and its signaling pathways. The heterogeneous ensemble and loop dynamics explain how the EphA4 receptor is able to bind multiple A- and B-ephrin ligands and small molecules via conformational selection, which helps to fine-tune cellular signal response in both receptor and ligand cells
    corecore